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Depth pro� ling using photoacoustic spectra taken at multiple scan-
ning speeds or modulation frequencies is normally impaired by the
increase in spectral saturation that occurs with decreasing speed or
frequency. Photothermal depth pro� ling in general is also impeded
by the ill conditioned nature of the mathematical problem of deter-
mining a depth pro� le from photothermal data. This paper de-
scribes a method for reducing the saturation level in low-speed or
low-frequency spectra to the level at high speed or frequency so
that all spectra have the same saturation. The conversion method
requires only magnitude spectra, so it is applicable to both conven-
tional and phase-modulation photoacoustic spectra. This paper also
demonstrates a method for quantitative depth pro� ling with these
converted spectra that makes use of prior knowledge about the type
of pro� le existing in a sample to reduce the instabilities associated
with the mathematically ill conditioned task.

Index Headings: Depth pro� ling; Photoacoustic spectroscopy; PAS;
Spectrum saturation.
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INTRODUCTION

A nondestructive depth-pro� ling probe for determining
molecular composition is a highly desirable analysis tool,
but there are few methods that provide one. Confocal
spectroscopic microscopy can depth pro� le visible struc-
tures, but its depth resolution is approximately equal to
its depth of � eld.1 The resolution of Raman microscopy
is also limited to its depth of � eld. 2 Variable-angle atten-
uated total re� ectance gives very good resolution, but its
probe depth is limited to a few micrometers at most.3,4

Photothermal techniques have the virtue of a frequency
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dependent, and therefore adjustable, probe depth. Various
photothermal techniques have been used for depth pro-
� ling, including the mirage effect,5–7 the photopyroelec-
tric effect,8,9 and detecting the acoustic wave produced
with a pulsed laser via the photoacoustic effect.10–12 By
far the most popular photothermal technique for depth
pro� ling, however, is Fourier transform infrared (FT-IR)
photoacoustic spectroscopy (PAS), in which the thermal
wave is (indirectly) detected.

In PAS, intensity-modulated radiation is incident on a
sample in a sealed chamber.13,14 Heat deposited by sample
absorption travels to the sample surface as a damped ther-
mal wave. At the sample surface, the thermal wave heats
the surrounding gas, modulating its pressure at the same
frequency as the incident radiation. The pressure modu-
lation is detected as sound by a microphone. Even before
the widespread use of FT-IR spectrometers, PAS was
used for depth pro� ling by chopping the incident radia-
tion and using phase-sensitive detection. The phase of the
signal depends on the average sample depth at which the
incident radiation is absorbed, so for two-layer samples
it is possible to select a phase roughly orthogonal to the
signal from one layer, effectively isolating the spectrum
of the other layer.15,16 With the advent of the FT-IR spec-
trometer, PAS depth pro� ling became more common. The
FT-IR spectrometer allows easy adjustment of the mod-
ulation frequency over a wide range, giving the user con-
trol over the PAS probe depth. Conventionally, the PAS
probe depth is taken to be the thermal diffusion length,
L, which is given by13,14

1/2
D

L 5 (1)1 2p f

where D is the thermal diffusivity of the sample and f
is the modulation frequency of the incident radiation. For
conventional FT-IR scanning, f 5 v , where v is the op-ñ
tical-path-difference (OPD) scanning speed (which is
twice the mirror velocity) and is the wavenumber. Nu-ñ
merous studies have been done in which the scanning
speed is varied to examine a sample with a series of probe
depths.14,17–21 It has also been recognized that a method
to remove saturation from PAS spectra, or ‘‘linearize’’
them, emphasizes peaks from components concentrated
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at the surface of a sample, so this has been used to gain
depth information.22–24 Unfortunately, conventional FT-IR
PAS does not provide ready access to the phase of the
photoacoustic signal. The introduction of the phase-mod-
ulation FT-IR spectrometer,25 commonly called step-scan
FT-IR, provided an easier method for determining phase.
In addition, the same modulation frequency applies to the
full spectrum in phase modulation, so the wavenumber
dependence of the thermal diffusion length is removed. 25

The capabilities of phase modulation led to several meth-
ods of visualizing signal phase and using it to interpret
the depth structure of samples.24,26 Phase modulation has
resulted in increased research on using PAS for depth
pro� ling. 23,24,26–33 Nevertheless, conventional depth pro� l-
ing by frequency variation remains the more popular ap-
proach, both because of the higher cost of phase-modu-
lation spectrometers and because of the more complicated
data processing and interpretation of phase data.

For samples composed of discrete layers, layer thick-
nesses can be quantitatively determined from phase dif-
ferences if there is no overlap27,28 or very modest over-
lap23,29 between peaks from different layers, and the the-
ory for discretely layered samples is well understood.34

Except for this one use, almost all FT-IR PAS depth-
pro� ling results have been only qualitative in nature,
identifying and ordering layers or detecting the presence
of compositional gradients. Two impediments to FT-IR
PAS depth pro� ling account for this limitation—optical
saturation and ill conditioning.

As in other forms of spectroscopy, the PAS signal is
said to be saturated when it loses its dependence on the
sample absorption coef� cient, a, but saturation in PAS
takes a somewhat different form from that in transmission
spectroscopy. For homogeneous, thermally thick (L ,
sample thickness) samples, the photoacoustic signal is
proport ional to aL 2, as long as L , 1/a, even if the sam-
ple is opaque.13 Only when L . 1/a does the signal sat-
urate; it becomes proport ional to L but independent of a.
In depth pro� ling, this means that when the modulation
frequency is lowered to increase the thermal diffusion
length, the amount of saturation in a spectrum increases
as L approaches 1/a. Because a varies from one peak to
the next, different peaks saturate at different points as the
modulation frequency drops, which complicates even the
qualitative interpretation of a set of spectra with differing
modulation frequencies.14,18,19,30

The general problem of determining the depth pro� le
that gives rise to an observed set of photoacoustic mag-
nitudes or phases (or both) based on those observations
is, in mathematical terms, ill conditioned.35,36 That means
the solution (the depth pro� le) is extremely sensitive to
small errors in the initial data. Researchers have therefore

approached this problem either by using regularization
techniques to stabilize the solution recovery,35,36 or by
using intrinsically more stable approximate solutions.37

In this paper, we propose a solution to the saturation
impediment that equalizes the degree of saturation in
spectra with different thermal diffusion lengths, and we
demonstrate a method that can circumvent the impedi-
ment of ill conditioning in favorable cases by making use
of a priori knowledge about the sample structure to limit
the possible depth-pro� le solutions. This paper describes
a method for reducing the level of saturation in a low-
scanning-speed or low-modulation-frequency spectrum to
that in a high-speed or high-frequency spectrum. This
makes the intuitive approach of comparing spectra with
different probe depths to qualitatively determine depth
pro� les much easier. The method makes use solely of
magnitude spectra, so it is applicable to both phase-mod-
ulation and conventional FT-IR PAS spectra. It relies on
having one peak in a spectrum whose scanning-speed (or
frequency) dependence is like that of a peak arising from
a homogeneous component. The change in magnitude of
this peak between the low-speed spectrum and the high-
speed spectrum is used as a guide for determining how
much correction for saturation is needed in the low-speed
spectrum to make it the saturation-level equivalent of the
high-speed spectrum. Freed of saturation distortion, these
high-speed-equivalent spectra are more readily useable in
determining depth pro� les. They still suffer from being
formally ill conditioned for quantitative depth pro� ling,
as all photothermal data are, but we demonstrate in this
paper an approach that uses them to produce good depth
pro� les under favorable conditions from both discretely
layered samples and samples with components having
continuously vary ing concentrations. The approach
makes use of a priori knowledge of what type of depth
pro� le a sample should have. With the type of pro� le
de� ned, the photoacoustic data are then used to determine
only the values of the parameters in the predetermined
pro� le function. This approach constrains the possible
depth-pro� le solutions and reduces the likelihood of er-
roneous results.

THEORY

The goal is to reduce the photoacoustic saturation ob-
served in a low scanning-speed (i.e., low modulation fre-
quency) spectrum to the same level as a high scanning-
speed spectrum so that the two spectra can be compared
free of saturation differences. Equation 21 of Rosencwaig
and Gersho 13 is the formula for Q , the complex envelope
of the sinusoidal pressure variation that constitutes the
photoacoustic signal:

s l 2s l 2als saI gP (r 2 1)(b 1 1)e 2 (r 1 1)(b 2 1)e 1 2(b 2 r)e0 0Q 5 (2)
3 /2 2 2 s l 2s l1 2s s2 k l a T (a 2 s ) (g 1 1)(b 1 1)e 2 (g 2 1)(b 2 1)es g g 0 s

where a is the optical absorption coef� cient, I0 is the
incident light � ux, g is the heat capacity ratio of the gas,
P0 and T0 are the ambient pressure and temperature in

the photoacoustic cell, l is the sample thickness, l g is the
gas thickness, and for material i (where i can be g, s, or
b, for gas, sample, or backing) k i is the thermal conduc-
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tivity, C i is the heat capacity, ri is the density, D i 5 ki/riC i

is the thermal diffusivity, a i 5 1/L i 5 (p f /D i)1/2 is the
thermal diffusion coef� cient, L i is the thermal diffusion
length, f is the modulation frequency, and s i 5 (1 1 j)a i.
In addition, b 5 k ba b /(k sa s), g 5 k ga g /(k sa s), and r 5 ½(1
2 j)a/a s.

For thermally and optically thick samples, s sl ¾ 1 and
al ¾ 1, so the and e2a l terms can be dropped , which2s lse
simpli� es Eq. 2 to the following:

aI gP r 2 10 0Q 5 (3)
3 /2 2 2 1 22 k l a T (a 2 s ) g 1 1s g g 0 s

From the de� nitions given above, it can be shown that
s s 5 a/r . Substituting this for s s gives the following:

2I gP r0 0Q 5 (4)
3 /22 k l a T a(r 1 1)(g 1 1)s g g 0

Let the ratio of the high-speed spectrum to the low-
speed spectrum at any given wavenumber be R . This
equals the ratio of Q at the high-speed frequency and Q
at the low-speed frequency. The only quantities on the
right side of Eq. 4 that depend on frequency are r and
a g, so all of the other variables cancel out when calcu-
lating R:

2r a (r 1 1)Q h gl lhR 5 5 (5)
2Q r a (r 1 1)l l gh h

where the l and h subscripts refer to the two frequencies.
If the frequencies of the data point at the low and high
speeds are f and Nf, respectively, then r h 5 r l /N1/2 and
a gh 5 a glN1/2. Equation 5 therefore simpli� es to

r 1 1lR 5 (6)
1/2N (r 1 N )l

Unfortunately, r depends on both the absorption co-
ef� cient at each wavenumber and the thermal properties
of the sample, so Eq. 6 by itself cannot be used to de-
termine R from just the observed spectra. A substitute
for r must be derived from the spectra. This can be done
by scaling a spectrum according to how saturated it is;
that is, by putting it on a scale of 0 to 1 where 1 is the
completely saturated, maximum possible photoacoustic
signal, which is the signal for an in� nite absorption co-
ef� cient. The maximum possible signal, Qmax, can be de-
rived from Eq. 4:

I gP r0 0Q 5 lim Q 5 (7)max 3 /22 k l a T a(g 1 1)a® ` s g g 0

The data points of the spectrum scaled from 0 to 1, Q sc,
can then be calculated by ratioing Q and Qmax:

Q r
Q 5 5 (8)sc Q r 1 1max

Combining Eqs. 6 and 8 allows r l to be eliminated,
and R can be written in terms of Q sc, or Q sc can be written
in terms of R:

1
R 5 (9)

3 /2 3 /2N 1 Q (N 2 N )sc

3 /2N R 2 1
Q 5 (10)sc 1/2NR (N 2 1)

where Q sc is the scaled version of the low-speed spec-
trum. Equations 9 and 10 are valid for unnormalized pho-
toacoustic spectra without any instrumental effects (e.g.,
the frequency-dependent throughput of a spectrometer).
In practical terms, normalized spectra must be used so as
to eliminate instrumental effects. Using normalized spec-
tra changes R because of the frequency dependence of
the photoacoustic signal from the normalization refer-
ence. Assuming the reference-material signal has a mag-
nitude with f 21 dependence and a frequency-independent
phase, as is expected for a good reference,13,38 then R n 5
NR , where R n is R for use with normalized spectra.
Equations 9 and 10 can then be rewritten for normalized
spectra:

1
R 5 (11)n 1/2 1/2N 1 Q (1 2 N )sc

1/2N R 2 1nQ 5 (12)sc 1/2R (N 2 1)n

In the above equations, R n and Q sc are vectors, having
both magnitude and phase. Only the magnitudes of these
vectors, R n and Q sc, can be derived from ordinary mag-
nitude spectra, so Eqs. 11 and 12 must be recast for the
magnitudes:

1
R 5 (13)n 1/2 1/2 1/2 2 2 1/2[N 1 2N (1 2 N )q 1 (1 2 N ) Q ]r sc

2 1/2 1/2[NR 2 2N r 1 1]n rQ 5 (14)sc 1/2R (N 2 1)n

where q r and rr are the real components of the vectors
Q sc and R n, respectively. The real components can be
related to the magnitudes:

aL 1 1
2q 5 Q (15)r scaL

1/2(N 2 1)(aL 1 2)
2r 5 1 1 R (16)r n2 21 2a L 1 2aL 1 2

The aL product can be written in terms of either Qsc or
R n, as needed:

2 2 1/2Q 1 Q (2 2 Q )sc sc scaL 5 (17)
21 2 Q sc

1/2 2 4 2 1/2 2 2 1/21 2 N R 2 [2NR 1 2NR 2 2N R 1 2R 2 1]n n n n naL 5
2R 2 1n

(18)

Substituting Eqs. 15 and 17 into Eq. 13 allows R n to be
determined from Q sc, while substituting Eqs. 16 and 18
into Eq. 14 gives Q sc from R n. Figure 1 shows how R n

and Q sc are related for various values of N. Note that the
value for aL calculated from Eq. 17 or 18 is the product
of the absorption coef� cient and thermal diffusion length
only if a peak arises from a homogeneous component.
Although the above discussion refers to two different
scanning speeds, it applies equally well when data are
collected at two different modulation frequencies unre-
lated to scanning speed, such as in phase-modulation
spectroscopy. The composite-piston model of McDonald
and Wetsel 38 can also be used as the starting point for
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FIG. 1. Relation between the ratio, R n, of photoacous tic magnitudes at
two different scanning speeds and the magnitude of the photoacous tic
signal at the lower speed, Q sc, on a scale where a completely saturated
signal equals one. The ratio of the scanning speeds is marked for each
curve.

developing the speed-conversion equations if the physical
oscillation from thermal expansion by the sample is ne-
glected. Equations 13 through 18 can be derived from
Eq. 41 of McDonald and Wetsel if the thermal expansion
coef� cient (their bT ) is set to zero.

EXPERIMENTAL

Two Bio-Rad FTS 60A FT-IR spectrometers � tted with
MTEC Model 200 photoacoustic detectors were used for
all spectrum acquisition. One spectrometer was controlled
by a Bio-Rad SPC 3200 Workstation running Unix-based
DDS. It acquired the data in Figs. 2 through 5. The other
used a Digital Celebris 90 MHz Pentium PC running
Windows NT 4 based Win-IR Pro. It acquired the data
in Figs. 6 through 8. All data were taken using normal
(non-phase modulation) scanning at 8 cm21 resolution.
The number of scans coadded depended on scanning
speed. The Bio-Rad spectrometers denote scanning speed
in terms of HeNe laser-fringe modulation frequency.
There were 10 scans at 50 Hz (0.00316 cm/s OPD ve-
locity), 20 at 100 Hz (0.00633 cm/s), 41 at 200 Hz
(0.0127 cm/s), 82 at 400 Hz (0.0253 cm/s), 164 at 800
Hz (0.0506 cm/s), 512 at 2.5 kHz (0.158 cm/s), 1024 at
5 kHz (0.316 cm/s), 2048 at 10 kHz (0.633 cm/s), 4096
at 20 kHz (1.27 cm/s), and at 40 kHz (2.53 cm/s) either
8192 scans for the data in Figs. 2 through 5 or 32 768
scans for the data in Figs. 6 through 8. Glassy carbon
(MTEC Photoacoustics) was used as the normalization
reference. The photoacoustic detectors were helium
purged and desiccant (magnesium perchlorate) was
placed in the detectors beneath the samples. The spectra
were translated using GRAMS/386 into spreadsheet-� le
format, then the speed conversion and most other data
processing were performed using Lotus 1-2-3. The non-
linear least-squares curve � tting was done using

SigmaPlot. A thermal diffusivity of 0.0010 cm 2 /s for
polyethylene terephthalate (PET) was used for all calcu-
lations, based on data from Anderson and Acton.39

Three sample types were used in the experiments. A
1.3-mm-thick poly(methyl methacrylate) disk was used for
the homogeneous-sample work. A layered sample was
constructed using a previously described method 29 from a
6-mm sheet of PET (Chemplex) and 1.6-mm-thick poly-
carbonate (GE Lexant). A brass ring (6-mm i.d.) was
placed on top of the layered sample during data collection
so that any delaminations at the edge of the sample were
hidden. A set of arti� cially weathered PET samples were
used for depth pro� ling a sample gradient. These were 0.3-
mm-thick extruded sheets containing varying amounts of
Tinuvin 360t. The weathering was 1088 hours exposure
according to Method A of ASTM G26,40 which consists
of xenon arc light � ltered by borosilicate (daylight) � lters.
The conditions were continuous illumination at 0.35 W/
m 2 (at 340 nm) and 63 8C black-panel temperature with
an 18 min water spray repeated every 2 h. The brass ring
was also placed on top of these samples during spectrum
collection.

To con� rm the depth pro� ling results from the speed-
conversion method, the weathered PET samples were de-
structively analyzed using a method of successive lap-
ping.41 In this method, the thickness of the sample is mea-
sured and a photoacoustic spectrum of the sample is ac-
quired at a high scanning speed and thus at a small
thermal diffusion length. A few micrometers of the sam-
ple are then removed using the MTEC MicroLap, another
high-scanning-speed spectrum is acquired, and the sam-
ple thickness (or more accurately, the combined thickness
of the sample and its MicroLap mount) is again mea-
sured. This lapping, scanning, and thickness measuring
cycle is repeated until all of the thickness of interest with-
in the sample has been analyzed. The variation of peak
heights with lapping depth then provides a direct measure
of variations in component concentrations through the
lapped portion of the sample. In the present study, the
spectra were acquired at a 20 kHz scanning speed, cor-
responding to a 2.8 mm thermal diffusion length (at the
3271 cm21 position of the peak used in the analysis, and
based on a thermal diffusivity of 0.0010 cm 2 /s). A fresh
12-mm-grit lapping disk was installed on the MicroLap
at the beginning of each sample analysis, and 204 g of
weight was used to supply the force pressing the sample
against the lapping disk. The lapping time between suc-
cessive spectra varied from 2 s to 3 min, depending on
the amount of material to be removed and how worn the
lapping disk had become during the analysis. We have
used the thermal diffusion length of the photoacoustic
measurement as the probe depth of the measurement,
which means that the sample depth for the measured peak
heights prior to any lapping is 3 mm. (We have rounded
to the nearest micrometer because the sample-thickness
measurements are accurate only to 61 mm at best.) The
sample depths for successive spectra are then the total
thickness of material lapped off plus 3 mm. This depth
scale gives a better � t with the speed-conversion results
than assuming a 0 mm depth for the pre-lapping mea-
surement. One of the samples (that containing 2% addi-
tive) required a modi� cation of this scale. The � rst lap-
ping performed on this sample changed the measured
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FIG. 2. Spectra of a thick sample of PMMA taken at scanning speeds
of 2.5 and 40 kHz, and the conversion -parameter values for the guide
peak, G, and an example peak.

FIG. 3. Conversion of two low-speed spectra of PMMA to high-speed
equivalents. (A) The 2.5 and 40 kHz spectra from Fig. 2, the 2.5 kHz
spectrum after conversio n to 40 kHz equivalence (dotted line), and the
difference spectrum between the true 40 kHz spectrum and the 40 kHz-
equivalen t spectrum. (B) As in A, except using starting spectra at 200
Hz and 40 kHz.thickness by an unusually large amount (15 mm) but had

little effect on spectrum-peak height. The next three lap-
pings after that each removed a decreasing thickness and
had an increasing effect on peak height. Apparently, this
sample had a few high points on its surface, which were
all that was being taken off at � rst. The ‘‘depth’’ of the
sample surface, therefore, had to be assigned for this one
sample. Given the decaying-exponential gradient expect-
ed for this sample (see Results and Discussion), the great-
est change in peak height with depth should occur at the
sample surface measurement (i.e., at a probe depth of 3
mm). Accordingly, we have assigned the measurement
after the second lapping (when the total measured reduc-
tion in thickness was 19 mm) a depth of 1 mm, which
places the greatest peak-height change with depth be-
tween 2 and 3 mm.

RESULTS AND DISCUSSION

Performing a speed conversion can best be illustrated
using spectra of a homogeneous sample. Figure 2 shows
two spectra of a thermally thick disk of poly(methyl
methacrylate) (PMMA). The taller of the two spectra was
taken at a scanning speed of 2.5 kHz and the smaller at
40 kHz, so the frequency ratio, N, is 16. The process
begins by scaling the low-speed spectrum. The behavior
of a peak, G, in the two spectra will be used to guide the
scaling. The peak must arise from a homogeneous com-
ponent of the sample so that the height of the peak varies
with scanning speed according to the Rosencwaig and
Gersho theory.13 In Fig. 2, the peak at 1153 cm21 has
been selected to be G. If the heights of peak G are h h

and h l in the high- and low-speed spectra, respectively,
then R n 5 h h /h l, and Q sc for the peak, which we will call
Q G, can be calculated from Eq. 14. The peak-height ratio
of G in Fig. 2 is 0.657, so from Eq. 14 (or reading from
Fig. 1), Q G is 0.849. Now that Q G is known, the scaling
for the rest of the spectrum is straightforward because the
scaling is linear with a scaling factor of Q G /h l. If a data
point in the low-speed spectrum has a value Y, so that it
is y times the value of peak G, then it will have a value

of yQ G in the scaled spectrum; Q sc 5 yQ G 5 YQ G /h l for
that point. For example, the second peak marked in Fig.
2 is at 1273 cm21. In the low-speed spectrum, the mag-
nitude of this peak is 81% the magnitude of G, so Q sc at
1273 cm21 is 81% of Q G, or 0.688. Once the whole spec-
trum has been scaled and all of the Q sc values are known,
Eq. 13 is used to determine R n for each data point. For
the 1273 cm21 peak of the example, R n calculated from
Eq. 13 (or read from Fig. 1) is 0.478. Each data point in
the starting, low-speed spectrum (not the scaled spec-
trum) is multiplied by the R n calculated for it to produce
the high-speed-spectrum equivalent.

For a homogeneous sample, the high-speed equivalent
should be identical to the spectrum acquired at high
speed. Figure 3A shows the example pair of PMMA
spectra from Fig. 2 along with the results of the example
speed conversion. The high-speed equivalent is plotted as
a dotted line, but it is hard to discern because it overlaps
the true high-speed spectrum. The fourth spectrum in Fig.
3A, centered around zero magnitude, is an error spec-
trum, the difference between the true high-speed spec-
trum and the high-speed equivalent (true minus equiva-
lent). The error spectrum shows that there are two kinds
of errors present in the speed-conversion result. First, the
1736 cm21 peak is slightly under predicted by the speed
conversion. Second, the errors all have a derivative-like
form, tending to be positive-valued on the low-wave-
number side of a peak and negative-valued on the other
side. This arises from a phenomenon not predicted by the
Rosencwaig–Gersho theory. As the amount of saturation
grows, the observed location of a spectrum peak slowly
shifts to higher wavenumber. For the example in Fig. 3A,
this shift is less than the spacing between adjacent data
points, even for the strongest, most saturated features.
Nevertheless, it results in the speed conversion predic-
tions being slightly too small on the low-wavenumber
side and slightly too large on the other side of the stron-
gest peaks.



414 Volume 56, Number 4, 2002

Figure 3B shows a second example using the same
PMMA sample, but with a much larger frequency ratio
between the starting spectra. The tall spectrum was ac-
quired at 200 Hz, and the smaller, solid-line spectrum is
the 40 kHz spectrum used before, so N is now 200. The
dotted spectrum is the high-speed equivalent calculated
from the 200 Hz spectrum, again using 1153 cm21 as the
guide peak. An error spectrum is also plotted as before.
Overall, the speed-converted spectrum is qualitatively
similar to the true high-speed spectrum, but the closeness
of the match varies substantially from peak to peak. Be-
tween 1000 and 2000 cm21, the error spectrum in Fig.
3B looks largely like an ampli� ed version of the Fig. 3A
error spectrum. This comes from the saturation-related
peak shift being larger here than in the previous example,
so the derivative-like errors are greater. Outside the 1000
to 2000 cm21 range, the error spectrum shows another
trend. The error-spectrum features are negative-going at
low wavenumbers and positive-going at high wavenum-
bers. This is a general pattern we have observed for a
variety of samples once N becomes large enough; partly
saturated peaks in the low-speed spectrum tend to be too
large after speed conversion at wavenumbers below the
guide-peak location and too small above the guide peak,
with the error generally increasing with distance from the
guide peak. We have observed this trend with phase-mod-
ulation spectra as well, so it is not related to the variation
in modulation frequency with wavenumber across rapid-
scan spectra. Using a different material as the background
reference may help in individual cases by providing dif-
ferent normalization scaling. Here, however, we have
used glassy carbon throughout because we found it to be
the best general background reference.

The thermal diffusion length, which is proportional to
f 21/2, is conventionally taken as the approximate probe
depth of a photoacoustic measurement. A set of speed-
converted spectra at various scanning speeds (and so var-
ious frequencies) therefore provides a qualitative view of
the depth dependence in a sample. This view is much
clearer than that from unconverted spectra because the
obscuring effects of unequal saturation levels have been
removed. The utility of speed-converted spectra can be
extended even further. With some foreknowledge of what
kind of depth pro� le should be present in a sample, quan-
titative depth pro� les can be derived from the speed-con-
verted data.

Two decay effects control the depth sensitivity of
speed-converted spectra; the attenuation of illuminating
radiation as it is absorbed in the sample, and the decay
of the thermal wave as it travels from the point of radi-
ation absorption to the sample surface. Formally, speed
conversion removes the effects of illumination attenua-
tion, but if the average value of the depth-varying ab-
sorption coef� cient is suf� ciently large, virtually all of
the illuminating radiation will be absorbed within one
thermal diffusion length of the sample surface. No infor-
mation can be gathered from depths where the illumi-
nation does not reach. Accordingly, the rest of this paper
will be limited to the case where speed conversion re-
duces the effects of radiation attenuation to the point that
attenuation may be ignored over the range of depths be-
ing probed. Within this limitation, the depth sensitivity
of speed-converted spectra is controlled solely by the ex-

ponentially decaying thermal wave. The thermal diffu-
sion coef� cient, a, which equals 1/L, is the rate constant
for this decay. The photoacoustic signal is therefore pro-
portional to the product of the absorption coef� cient and
the fraction of the decayed thermal wave that reaches the
sample surface, integrated over the full thickness of the
sample:

`

21 2x /LS } L a(x)e dx (19)E
0

where S is the normalized, speed-converted photoacoustic
signal; the L21 outside the integral is a normalization fac-
tor; and it is assumed the sample is thermally thick (i.e.,
the sample thickness is much greater than L), so that the
integration can extend to in� nity. Also implicit in Eq. 19
is the assumption that the speed conversion does not im-
properly correct a peak height. The equations for speed
conversion are based on a homogeneous-sample model.
If depth-related composition changes cause a peak to
grow so much over the range of scanning speeds used
that the peak appears to be entering saturation, then the
speed conversion will inappropriately ‘‘correct’’ it, and it
will appear too large in the speed-converted spectrum.
The 560 cm21 peak in Fig. 4 is an example of this and
is discussed below.

As previously discussed, determining a(x) from a set
of S values measured at various thermal diffusion lengths,
is an ‘‘ill conditioned’’ problem.35,36 Although the general
solution for determining depth pro� les from spectra may
be ill conditioned, if there is a priori knowledge of what
kind of depth pro� le a sample should have, so that only
a few parameters need to be determined, then the speed-
converted spectra can often be used with Eq. 19 to de-
termine the speci� c pro� le. The simplest non-trivial case
is a sample composed of a discrete layer of thickness l
on top of a thermally thick substrate. At a given wave-
number, the absorption coef� cient has a constant value,
a1, for 0 , x , l, and a second constant value, a2, for x
. l. For such an a(x), Eq. 19 becomes the following:

S 5 C(a1 1 (a2 2 a1)e2 l / L) (20)

where C is a proport ionality constant. This assumes there
is negligible difference between the thermal properties of
the substrate and overlayer. The normalized, speed-con-
verted photoacoustic signal can be considered an expo-
nential function of 1/L, with a rate constant of l. The
thickness of the discrete layer can be determined by � t-
ting Eq. 20 to a set of measured S values.

Figure 4 shows spectra for a sample consisting of a 6-
mm layer of PET on top of a 1.7-mm-thick polycarbonate
substrate. The bottom panel in Fig. 4 shows normalized
photoacoustic spectra of the sample taken at scanning
speeds of 40 kHz (thick solid line), 10 kHz (dot-dash
line), 2.5 kHz (thin solid line), and 400 Hz (dotted line).
The reader is reminded that these frequencies are mod-
ulation rates for the HeNe laser beam within the spec-
trometer and not for the infrared beam incident on the
sample. The top panel in Fig. 4 shows the same 40 kHz
spectrum and the other spectra converted to 40 kHz
equivalents. The guide-point position for the conversions
was 1111 cm21, which is on the � at shoulder of the broad
1130 cm21 band. Using this � at area reduces the possi-
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FIG. 4. Spectra of a sample consisting of a 6-mm layer of PET on a
thick polycarbon ate substrate taken at 40 kHz (thick solid line), 10 kHz
(dot-dash line), 2.5 kHz (thin solid line), and 400 Hz (dotted line) scan-
ning speeds. Lower panel; spectra as acquired. Upper panel; the same
spectra as in the lower pane l after conversion to 40 kHz equivalence.

FIG. 5. Peak heights as a function of thermal diffusion length for � ve
peaks taken from seven speed-conv erted spectra (including those in the
upper panel of Fig. 4) of a sample consisting of a 6-mm layer of PET
on a polycarbon ate substrate.

bility of the previously described peak-shifting affecting
the accuracy of the guide-point values. Prior to speed
conversion, the 40 kHz spectrum is the smallest through-
out, indicating that, as usual, the signal magnitude in-
creases with decreasing scanning speed everywhere ex-
cept the most saturated features. After speed conversion,
this behavior is gone, and each peak has its own trend,
qualitatively indicating the depth-related sample struc-
ture. Those peaks that grow with decreasing scanning
speed grow with increasing thermal diffusion length, so
they must arise from the polycarbonate substrate. Those
peaks that shrink with decreasing scanning speed and in-
creasing thermal diffusion length must come from the
PET layer. The strongest bands in the 40 kHz spectrum
(730, 1020, and 1130 cm21) change little with scanning
speed after conversion, indicating that they are strong
PET bands in which almost all of the incident beam in-
tensity is absorbed within the PET. The polycarbonate
band at 560 cm21 is an example of a peak that is im-
properly corrected by the speed conversion because the
peak grows so large at low scanning speeds. In the speed-
converted spectra, the 560 cm21 peak height grows steadi-
ly between the 40 and 2.5 kHz spectra but then leaps to
a much higher value at 400 Hz. In the spectra prior to
conversion, the 560 cm21 peak is smaller than the strong,
highly saturated PET bands, except in the 400 Hz spec-
trum. At 400 Hz, the 560 cm21 peak is as tall as these
bands, so the conversion treats it as a highly saturated
band; its Q sc and R n values are near 1, and the peak height
remains near its original value of 600 after conversion.
The speed-conversion equations properly correct the
growth of large peaks arising from homogenous com-

ponents, but it can distort large peaks whose growth is
principally caused by sample structure.

Performing a least-squares � t of the function on the
right side of Eq. 20 to a set of speed-converted heights
for a selected peak determines l, the thickness of the top
layer, but which peak do you select? There are three fac-
tors to keep in mind when choosing peaks to analyze.
First, because of the potential distortion of large nonho-
mogeneous peaks, like the 560 cm21 example, it is best
to use features that remain moderate in size after speed
conversion. Second, because of the ill conditioning of this
problem, it is best to analyze several peaks and use only
those that give the best � t (e.g., the smallest rms errors)
to the model function. Third, because the observed peak
location shifts with scanning speed, as discussed above,
the wavenumber location of a peak at low scanning
speeds may be higher than it is at high scanning speeds,
so there is some uncertainty in exactly which data point
to use for a given peak. If the wavenumber location of
the peak as observed in high-speed spectra is chosen,
then of course at high speed the chosen location is on the
band peak, but at low speeds it is not. For the low-speed
location, the reverse is true. This means that using the
high-speed location yields apparent peak heights that are
larger at high speeds and smaller at low speeds than using
the low-speed location would yield. As a result, the high-
speed peak position generally gives a smaller value for l
than the low-speed position does because the S vs. L
curve � attens out faster with increasing L for the high-
speed location. Again, choosing the position that gives
the best � t to the model function is generally best, as
long as that � t is physically meaningful. For speed-con-
verted peaks that grow with increasing thermal diffusion
length (i.e., arise from the substrate), the high-speed peak
position may � t the model function well and yet give a
negative value for Ca1 in Eq. 20, which implies a nega-
tive value for a1, which is impossible. When this occurs,
the l value determined at that wavenumber position is too
small, and a higher wavenumber position should be used
for the peak.
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FIG. 6. Heights of the 3271 cm21 hydroxy l peak in speed-conv erted
spectra of one unweathered and three weathered PET samples. Data for
the three weathered samples are identi� ed by their concentrat ion of
ultraviolet stabilizer. The discrete markers are the observed peak
heights, and the curves are least-squares � ts of Eq. 22 (with n 5 2) to
the observed points.

TABLE I. Hydroxyl gradient parameters from least-squares � ts of speed-converted peak heights.

Equation 22
parameters

Double-exponentia l � ts

Unweathered 2% additive 1% additive No additive

Single-expo-
nential � t

No additive

Cc0

Cc1

d1

Cc2

d2

12.9
42.3
22.95

210.5
21.0 3 10212

2.51
18.1

20.395
89.1

21.67

1.69
28.1

20.203
266.

210.2

3.09
22.0

20.117
1300.
234.6

4.73
67.0
20.468

Figure 5 shows the peak-height behavior of four peaks
from the PET-on-polycarbonate sample spectra. The data
points shown are those for the spectra in Fig. 4, along
with points from spectra taken at scanning speeds of 20
kHz, 5 kHz, and 800 Hz. The smooth curves are least-
squares � ts of the Eq. 20 function to the observed data
points. These four peaks give the best � ts among a dozen
different wavenumber positions tested. The l values de-
termined from these � ts are 6.5 mm at 772 cm21, 4.7 mm
at 795 cm21, 10.5 mm at 972 cm21, and 5.8 mm at 2974
cm21. Although the 10.5 mm value from 972 cm21 is ob-
viously high in comparison to the known thickness of 6
mm, there would be no objective reason to exclude this
result if the true thickness were not known; the root-
mean-square error of the 972 cm21 � t is smaller than that
for 772 cm21. Combining these four measurements gives
a layer thickness of 6.9 6 2.5 mm, in agreement with the
known value. The rms error of this is large because of
the ill-conditioned nature of the problem. Layer thick-
nesses in discretely layered samples can be determined
more straightforwardly and often more accurately using
phase measurements on peaks having little overlap with
bands from another sample layer.23,27–29 When there is
moderate overlap between peaks from different layers,
however, phase measurements cannot be used to deter-
mine layer thicknesses, but the present method can be
used.

Determining depth pro� les rather than just layer thick-
nesses is where using Eq. 19 and speed-converted spectra
can be superior to phase measurements. One common
pro� le type is an exponential gradient consisting of one
or a sum of exponentials:

n
d xia(x) 5 c 1 c e (21)O0 i

i51

where x is sample depth, and c0, c i, and d i are all con-
stants. From Eq. 19, the photoacoustic signal from a sam-
ple with such a gradient is

n ciS 5 C c 1 (22)O01 21 2 d Li51 i

where C is a proport ionality constant. We examined ar-
ti� cially weathered PET sheets as examples of materials
with two-exponential (n 5 2) gradients. The set consisted
of three samples weathered for 1088 hours and an un-
weathered control. The weathered samples contained 0,
1, and 2 wt % of the ultraviolet stabilizer Tinuvint 360.
We recorded spectra at nine scanning speeds from 40 kHz
to 50 Hz and speed converted them, again using 1111
cm21 as the guide peak. The hydroxyl peak at 3271 cm21

in the resulting spectra showed the gradient most clearly.
The discrete data points in Fig. 6 are the speed-converted
hydroxyl peak heights for all four samples. Least-squares
� ts to these peak heights using Eq. 22 with two expo-
nentials produce the parameter values in Table I and the
smooth curves in Fig. 6. The results are qualitatively rea-
sonable; the hydroxy l peak increases in size and the gra-
dient extends to greater thermal diffusion lengths for de-
creasing amounts of the stabilizer. The unweathered sam-
ple has a small, nearly constant hydroxyl peak at most
thermal diffusion lengths, but shows an increase at small
thermal diffusion lengths, which may indicate some hy-
droxyl species on the sample surface. The smooth curves
in Fig. 7 are the double-exponential depth pro� les cal-
culated from the parameters in Table I. Again, the results
are reasonable. In terms of the Table I parameters, all
three weathered samples have small d1 values and sub-
stantially larger d2 values. This means that the � rst ex-
ponentials taper off slowly with depth and account for
most of the shape of the curves in Fig. 7. The second
exponentials drop to negligible values at shallow depths,
so they affect only the near-surface results. The d1 values
decrease with decreasing additive concentration, indicat-
ing that the hydroxy l gradient extends to a greater depth
with decreasing additive. The large d1 and extremely
small d2 for the unweathered sample mean its gradient is
essentially a very shallow single exponential.

To determine whether these pro� les were correct, we



APPLIED SPECTROSCOPY 417

FIG. 7. Quantitative depth pro� les of the 3271 cm 21 peak in the same
weathered and unweathered PET samples as in Fig. 6. The smooth
curves are the calculated depth pro� les based on the parameters in Table
I and Eqs. 21 and 22. The discrete data points are observed peak heights
from spectra taken as material was lapped off the surface of each sam-
ple.

FIG. 8. (A) The speed-conv erted peak heights of the 3271 cm21 peak
in weathered PET containing no additive (discrete points) and the least
squares � ts to these points assuming a double-exp onential gradient (sol-
id line) or a single-exponentia l gradient (dashed line). The peak heights
and double-exp onential � t are the same as in Fig. 6. (B) The depth
pro� les derived from the double-exp onential (solid line) and single-
exponentia l (dashed line) � ts in A compared to the observed peak height
during the microlapp ing of the sample. The lapping points are the same
ones as in Fig. 7.

destructively analyzed the samples using the successive
lapping technique described in the Experimental sec-
tion.41 The successive lapping produced the discrete data
points in Fig. 7. The arbitrary vertical units are not the
same for the successive-lapping and speed-conversion
methods, so the speed-conversion curves have been
scaled and offset vertically as a group in Fig. 7 to give
the best match with the successive-lapping data. That is,
the same factor (2.14) was used to scale all four curves,
and the same factor (4.65) was used to offset all four.
Somewhat better � ts could have been achieved if each
curve were scaled and offset individually, but universal
factors were used because the only purpose was to bring
the two arbitrary scales into agreement.

The match between the two data sets is very good,
demonstrating that non-trivial depth pro� les can be ob-
tained nondestructively by photoacoustic analysis. The
limitation stated earlier must be emphasized, however;
the type of gradient curve to be � tted must be known in
advance in order to achieve a reliable depth pro� le. If a
plausible but incorrect type of curve is chosen, it is pos-
sible to get a precise � t to the peak-height data that pro-
duces an inaccurate depth pro� le. The weathered PET
data provide a case in point. Figure 8A shows the same
speed-converted peak-height data for the no-additive
sample, as in Fig. 6, and the same two-exponential-based
� t of the data as before (solid line). Figure 8A also shows
a least-squares � t based on a single exponential (dashed
line), the parameters for which are given in Table I. Both
are good � ts; the rms error of the one-exponential � t is
only 1.11 times that of the two-exponential � t, so the
two-exponential � t is only slightly better. Figure 8B,
however, shows that the resulting depth pro� les differ
substantially in how well they match the successive-lap-
ping data. Each pro� le has been scaled and offset verti-
cally to give the best least-squares � t to the lapping data,
but the one-exponential pro� le (dashed line) is obviously
inferior. (Because the two-exponential curve has been
scaled and offset individually in Fig. 8B, it � ts the lap-

ping data better than in Fig. 7, where universal scaling
and offsetting were used.) Among the weathered PET
samples, the differences between the two- and one-ex-
ponential pro� les decrease as the weathering effects de-
crease, as signi� ed by the decreasing values of both Cc2

and d2 with increasing additive concentration. Neverthe-
less, the two-exponential pro� le is always clearly better.

CONCLUSION

A method for making the level of saturation the same
in photoacoustic spectra taken at different scanning
speeds or modulation frequencies has been developed.
These saturation-equalized spectra make the depth-related
structure in samples much clearer. In addition, an ap-
proach for quantitatively depth pro� ling samples with
these spectra has been demonstrated. The approach
makes use of a priori knowledge about the sample struc-
ture to restrict the possible depth-pro� le outcomes and
reduce or avoid the ill-conditioned nature of the mathe-
matical problem.
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